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1 Abstract

The effects of ambient pressure, temperature, relative humidity, wind, truck traffic, truck tonnage and machine
crushing on PM10 concentration were examined through multiple linear regression. The effects of ambient
pressure, temperature, relative humidity and truck traffic were significant (p-value < 0.001). Daily Average
relative humidity, daily truck traffic, and daily truck tonnage were highly correlated with daily average PM10

however daily truck tonnage was not significant due to multicollinearity, when the daily Average relative
humidity was less than 80% and the daily truck traffic was over 150 trucks the likelihood of the daily average
PM10 exceeding 0.05 mg/m3 increased by 400%. There was no significant evidence that higher wind speeds
or winds in certain directions are associated with an increase in PM10 concentration. Predictive modelling
showed that reducing the number of days with high number of truck traffic whilst still maintaining yearly
truck traffic results in a significant reduction in both the yearly average PM10 and the daily average PM10.
Simulation of increased yearly truck tonnage showed an exponential relationship between increased yearly
tonnage and yearly average PM10.

2 Introduction

This study investigates the dependency of PM10 levels at Concrush Pty Ltd on weather factors such as wind,
temperature, ambient pressure and humidity as well as physical operations at the facility such as truck traffic
and crushing operations. PM10 refers to particulate matter with an equivalent aerodynamic diameter of 10
micrometres or less. Concrush Pty Ltd is a concrete and building materials recycling company located in
Teralba, NSW Australia and must operate in accordance with the National Environment Protection (Ambient
Air Quality) Measure 2021 [3] which has a maximum daily average concentration standard of 50 µg/m3 PM10

and a maximum yearly concentration standard of 25 µg/m3 PM10. The data for the analysis comes from 3
sources: readings from a QAMS Dust Master Pro 7000 [4], truck traffic logs that record the details of trucks
that enter and exit the facility and crushing data which contains logs of the material crushing on site. Dust
monitoring reports conducted by RCA Australia a company that among other services provides air quality
assessment found that for some months of the year PM10 exceeds both the daily and annual average criteria.
Multiple linear models will be used to identify the relationship between wind speed and wind direction
and how it effects PM10 concentration. Linear models will be built to identify the statistically significant
contributing factors of PM10 concentration. The results of these linear models will hopefully be able to guide
Concrush towards effective measures for PM10 reduction such as windbreakers to block winds from directions
that contributed significantly to PM10. Concrush intends to seek approval for increased operations from
250,000 tonnes/year to 350,000 tonnes/year, linear modelling will be used to predict the effect of increasing
tonnage/year on PM10 concentration.

3 Methodology

3.1 Multiple Linear Regression

The lm function in RStudio fits data to a linear model specified in the function to generate a linear model
that maximises R2. For a dataset with i = n observations where yi is the dependent variable, xi are the
explanatory variables, β0 is the constant term, βj are the β coefficients and ε is the error term, the linear
model is given by formula 1 below.

yi = β0 + β1xi1 + β2xi2 + · · · + βjxij + ε (1)

The summary function in RStudio prints the results and summary statistics for a given model, a brief de-
scription of the important summary outputs referred to in this analysis is given below.

R2: Also known as the coefficient of determination is the proportion of variance for the dependent variable
that can be explained by the independent variables. In multiple regression the addition of more independent
variables to the model will always result in an increase in R2.
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Adjusted R2: Adjusted R2 takes into account the number of independent variables in the model and only
increases when new terms improve the model more than would be expected by chance.

Coefficient Estimate: The coefficient estimates are the estimates of the β values which are multiplied
by the explanatory variables (xi) to determine their contribution to the independent variable yi. The coeffi-
cient estimate of β0 is an exception and is the estimate of the constant term or ’y-intercept’ which is the yi
estimate when all xi are 0.

Coefficient t-value: The coefficient t-value is a measure of how many standard deviations the coefficient esti-
mate is from 0. The magnitude of a coefficients t-value can be used to estimate the importance of the variable.

Coefficient p-value: The p-value for a coefficient tests the null hypothesis that the variable has no correla-
tion with the independent variable, if the p-value is less than 0.05 the null hypothesis is rejected.

3.2 Data Wrangling

RStudio was used for the analysis with the following packages installed: tidyverse, dplyr, corrplot, ggpubr,
moments and scales. Microsoft Excel was also used for the purpose of reformatting date and time variables
where RStudio was insufficient.

The primary data source provided for the analysis was the dust data which contained the readings from
a QAMS Dust Master Pro 7000 with Weather Sensor from Thompson Environmental Systems [4]. The Dust
Master is located at the weighbridge near the east side entrance to the facility from Racecourse Rd. The
Dust Master records the time, date, dust concentration (PM2.5, PM10 and PMTot), weather conditions and
Dust Master settings at 5 minute intervals continuously, for the full set of recorded values see table 6. The
data files provided contained observations from the 30th of June 2020 to the 28th of February 2021 and were
in .txt file format. These data files were imported into RStudio and joined to make a single Dust dataset
which contained 69,857 observations. The variable Dew Point contained missing values for 0.005% of the ob-
servations in the dataset however as Dew Point was not used in the analysis no missing values were imputed.
The dust data contained timestamps given by a date and time of day of recording for each observation, from
these variables a single time variables measured in minutes was created. The time for each observation was
calculated as the number of minutes that had passed since midnight on April 1st of 2020 (the date of the first
truck movement recorded). Due to either their repeated measure as a result of the addition of the weather
sensor or their irrelevance to the analysis the following variables were removed from the dataset: SV, LPM,
PUMP, M1.WD.SD, M1.T2, S.T, S.RH and M1.AP.

To investigate the hypothesis that there are winds of a certain magnitude and direction that are associ-
ated with an increase in PM10 levels, the wind speed and wind direction variables were used to impute wind
direction ’vectors’. For each observation categorical variables were created to represent different wind direc-
tion vectors, each wind direction vector corresponded to a range of values from the Wind direction variable.
For each observation each wind direction ’vector’ variable was assigned a 0 except for the ’vector’ whose
direction corresponded to the observations wind direction. Each wind direction vector was then multiplied
by the observation’s wind speed in order to give magnitude to the variable. Three sets of wind direction
’vectors’ were created from the dataset, the first with 4 wind directions, the second with 8 and the third
with 16. An observation belonged to a specific wind direction vector if its wind direction was greater than or
equal too Angle 1 and less than Angle 2 (see tables 9, 10 and 11), with the exception of North wind where
the wind direction needed to be greater than or equal too Angle 1, or less than Angle 2. For example if an
observation had a wind speed of 3 m/s and a wind direction of 40° then for 4 wind directions North would be
assigned a value of 3 and the others a value of 0, for 8 wind directions North East would be assigned a value of
3 and the others 0 and for 16 wind directions North North East would be assigned a value of 3 and the others 0.
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Files containing the the details of truck movements in and out of the facility were imported into RStudio,
these files were in .csv format and contained observations from the 1st of April 2020 to the 27th of February
2021 (Site was closed on the 28th of February). These files formed the Truck data which contains the time
of entry and exit for all trucks entering the Concrush facility, additionally the weight in tonnes of both the
truck and its load as well as a description of the load are recorded (for full set of recorded variables see table
7). The direction for each truck is also recorded, this refers to whether the truck is taking material in or out
of the compound and it also refers to when the recording was taken, if the direction was ’IN’ then the truck
details were recorded when the truck entered the facility through the weighbridge and for ’OUT’ the details
were recorded when it left the facility. The time in minutes passed since midnight on April 1st of 2020 was
calculated for both the Time In and Time Out as well as a new variable called Time on Site which was given
by the Time Out - Time In. The original dataset contained 54,198 observations which was reduced to 45,937
observations once repeated entries were removed, the dataset was further reduced to 43,238 observations when
observations with 0 Gross, Tare and Net weight were removed.

From the dataset 16,619 (38%) of the observations had a Time on Site of 0, that is that there Time In
and Time Out were the same. These observations have a time on site of 0 as a result of their time of entry or
exit only being recorded when they’ve either come ’IN’ or ’OUT’ of the site, for a truck whose time of entry
and exit are equal and has a Direction of ’IN’ this means that the time of entry is correct and the time of exit
is not, and vice versa for trucks whose time of entry and exit are equal and have a Direction of ’OUT’. To
impute these incorrect Time In and Time Out values the dataset was split into two, one dataset containing
only entries whose Time on Site is 0 and the other whose Time on Site is greater than 0. The dataset that
contained only positive values for Time on Site was then split further in to subsets based on the material
type in the observations description. Then for each of these subsets of data a linear model was created using
the lm function in RStudio of the form Time on Site (mins) = β0 + β1 × Net (tonnes) + ε. A linear model
of the same form was also created using the entire dataset of non-zero Time on Site observations. For each
observation in the full Truck dataset that had a Time on Site of 0, the Time on Site was imputed using the
linear model that matched the material type of the observation, where there was no matching material type
the model made from the full dataset was used. Using the direction and Time on Site the observations with
the same time of entry and exit were corrected, if the truck was entering the site when the observation was
recorded the time of exit was corrected by adding to it the time on site, for trucks that were exiting the site
the time of entry was corrected by subtracting from it the time on site.

Using the Truck dataset 3 new variables were imputed for the Dust dataset: Trucks In, Trucks Out and
Tonnage. The Trucks In is the number of trucks that entered the site in the 5 minutes before the observation
Time, the Trucks Out is the number of trucks that exited the site in 5 minutes before the observation Time
and the tonnage is the total tonnes (NET) that came in or out of the site in the five minutes before the
observation Time.

The final set of data was the Crushing data, which contained timestamped recordings of the crushing op-
erations. 3 sets of data were provided by Concrush: 30 Minute, daily and monthly sensor readings. For
the analysis the 30 minute sensor readings were used as they offered more precise readings. 30 minute sensor
readings means that whenever the machine begins crushing, every 30 minutes a reading is taken that describes
the material type being crushed, the density of the material, amount of material being crushed etc (see table
8 for the full list of variables recorded) with a final reading when the crushing stops which can have a duration
of less than 30 minutes. Readings are also taken when the machine is turned on or off and at the start or
end of a new measurement. As the crushing operations are of the only concern for the analysis observations
containing an amount of 0 were removed from the dataset. The dataset also contained readings that exceeded
a rate of 250 tonnes/hour which was identified by Concrush as the upper limit of the machines capability. For
each observation that exceeded that 250 tonnes/hours the amount crushed was replaced with the maximum
amount that could be crushed within that time period based on the density of the material. The amount
crushed was determined to exceed the maximum using the formula below, where density refers to the density
of the material being crushed.
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Maximum Amount Crushed (m3) =
250 (tonnes/h)

Density (tonnes/m3)
× Duration (mins) − Idle Time (mins)

60 (mins/h)

The Crushing dataset contains three timestamp recordings: Server Timestamp, Smartphone Timestamp and
Record Timestamp. The former two refer to when the recording was uploaded to either the server or the
smartphone, whereas the Record Timestamp refers to the actual time of the recording. From the Record
Timestamp the number of minutes that had passed since midnight on April 1st of 2020 was imputed.

Given that data is recorded in 30 minute intervals from when the machine is turned on with a final recording
when its turned off a 5 minute average of the amount of material crushed was imputed for each observation
in the Crushing dataset using the formula below.

5 Minute Average Crushing Amount (m3) =
5 (minutes) × Amount Crushed (m3)

Measurement Duration (minutes)

Another variable in the Crushing dataset was imputed, the Start Time for each observation was calculated by
subtracting the Duration from the Time. From this dataset the new variable Crushing Amount was imputed
for the Dust dataset. Each observation in the Dust dataset was checked against the Crushing dataset, if the
Time for an observation in the Dust dataset was between the Start Time and the Time (Time of Recording)
for an observation in the Crushing dataset then the Crushing Amount for that observation was the respective
5 Minute Average (m3) Crushing Amount. Where no observation in the Dust dataset had a matching Start
Time and Time from the Crushing dataset a Crushing Amount of 0 was assigned.

Using the Dust dataset that was recorded in 5 minute intervals a 24 Hour Dust dataset was created. The 24
Hour Dust dataset took the daily average of the following variables: PM10, Temperature, Humidity, Ambient
Pressure and Wind Speed as well as the daily total of the following variables: Trucks In, Tonnage (in and
out) and Crushing Amount. For the wind direction vectors the daily total was also taken, for example the 24
Hour Dust dataset with 4 wind directions contained the variables in table 1 below.

Table 1: 24 Hour Dust Dataset with 4 Wind Directions
Variable Description Units/Format

Average PM10 Daily Average PM10 mg/m3

Traffic Total Daily Total Trucks In count
Tonnage Total Daily Total Tonnage In & Out tonnes

Average Temperature Daily Average Temperature °C
Average Humidity Daily Average Humidity %

Average Ambient Pressure Daily Average Ambient Pressure mBar
Crushing Amount Total Daily Total Crushing Amount m3

Average Wind Speed Daily Wind Speed m/s
North Wind Total Daily North Wind Total m/s
East Wind Total Daily East Wind Total m/s

South Wind Total Daily South Wind Total m/s
West Wind Total Daily West Wind Total m/s

3.3 Data Exploration

The correlation coefficients of the non-wind variables in the 24 Hour Dust dataset were produced in RStudio
using the cor function with the default method ’pearson’ which indicates that the correlation coefficient to
be computed is the pearson correlation coefficient. Pearson correlation coefficient (r) is a measure of linear
association of two variables [2], variables with a high in magnitude linear association with the dependent
variable of a linear model would be expected to be significant whereas variables with a low in magnitude linear
association with the dependent variable of a linear model would be expected to be insignificant. Independent
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variables with a high in magnitude linear association with each other can cause multicollinearity [1]. Given
two vectors x and y of length n with respective means mx and my the pearson correlation coefficient r is given
by,

r =

∑
(x−mx)(y −my)√∑
(x−mx)2(y −my)2

These correlation coefficients were plotted using the corrplot function from the package of the same name.
Scatter plots of all of the non-wind variables against Average PM10 were produced using the ggplot function.

3.4 Transformations of the dependent variable

Transformations of the dependent variable Average PM10 were performed and 4 linear regression models were
computed using the lm function to test the efficacy of transforming the dependent variable. Given that the
Average PM10 was right skewed (most of the observations had a low Average PM10) a Log, Square Root and
Log of the Square Root transformations were tested, with R2 used to assess them. The four models tested
have 4 wind speeds and differ only in the dependent variable (see Equation 2,Equation 3, Equation 4 and
Equation 5 below).

Average PM10 = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + β7 × North Wind + β8 × East Wind

+β9 × South Wind + β10 × West Wind + ε

(2)

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + β7 × North Wind + β8 × East Wind

+β9 × South Wind + β10 × West Wind + ε

(3)

√
Average PM10 = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + β7 × North Wind + β8 × East Wind

+β9 × South Wind + β10 × West Wind + ε

(4)

log(
√

Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + β7 × North Wind + β8 × East Wind

+β9 × South Wind + β10 × West Wind + ε

(5)

3.5 Modeling Wind Speeds

For the wind speed analysis 5 linear regression models were computed to assess and compare the different
implementations of wind speed and wind direction variables. Given that the log transformation model per-
formed the best, all 5 of these models used log(Average PM10) as the independent variable. The equation for
the first model with no wind variables is given below (see Equation 6), for the other 4 models see equations
13, 14, 15 and 16 in Appendix C.

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + ε

(6)
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3.6 Modeling Log(Average PM10)

Given the results of the wind analysis log(Average PM10) was modelled against all of the variables in the 24
Hour Dust dataset with the exception of the wind speed and wind direction variables (See model 7). To check
for multicollinearity, additional models were created by using only one of the highly correlated independent
variables at a time (see models 8, 9 and 10).

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total

(7)

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Average Temperature

+β3 × Average Relative Humidity + β4 × Average Ambient Pressure
(8)

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Average Temperature

+β3 × Average Relative Humidity + β4 × Average Ambient Pressure

+β5 × Crushing Amount Total

(9)

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure
(10)

Multicollinearity was assessed by observing changes in variable significance from the results of the initial
model with all of the correlated variables included, if any variables were not significant in the presence of the
others but were significant on their own there is evidence of multicollinearity. To identify the variables of
most importance the absolute value of the coefficients associated t-statistic (t-value) is used, where a higher
value in magnitude is associated with a higher variable importance.

3.7 Average PM10 Estimates

Using model 8 log(Average PM10) was estimated for the 244 observations in the 24 Hour Dust dataset,
transformed to Average PM10 and then compared to the actual values of Average PM10 in the dataset. Re-
distribution of the the truck traffic was also tested by sampling each observations Traffic total (only for days
where Concrush was open) from a normal distribution centered at 158 which was the average Traffic total
for open days for the dataset, a standard deviation of 70

3
was chosen to keep the distribution highly centered

about the mean. The estimated Average PM10 levels were then calculated using the new Traffic total values
to assess the effect of reducing the number of days with really high Traffic total values without reducing the
yearly total traffic.

Given that the average tonnage (NET) per Truck is ≈ 5.588 tonnes, the estimated yearly traffic total for
a given yearly total tonnage is given by equation 11 below.

Yearly Traffic Total =
Yearly Tonnage Total (tonnes)

Average Tonnage per Truck (tonnes)

=
Yearly Tonnage Total (tonnes)

5.588 (tonnes)

(11)

Equation 11 was used to to predict the Yearly Traffic Total if the yearly tonnage was increased to 300,000,
350,000, 400,000, 450,000 and 500,000 tonnes. Given that the dataset only contains 244 days of data, the
Yearly Traffic Total was multiplied by 244/365 and then divided by 198 (number of open days in the dataset)
to estimate what the Average Daily Traffic Total for the 198 open days in the datatset would need to be to
achieve the given Yearly Tonnage Total (see equation 12).

Average Daily Traffic Total = Yearly Traffic Total × 244

365
× 1

198
(12)

For each of the 5 Yearly Tonnage Total increases (300,000, 350,000, 400,000, 450,000 and 500,000) a new
Traffic Total variable was created by sampling each observations Traffic total (only for days where Concrush
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was open) from a normal distribution centered at the Average Daily Traffic Total calculated for that Yearly
Tonnage Total, a standard deviation of 70

3
was chosen to keep the distribution consistent with the previous

traffic redistribution.

3.8 Visual Analysis

Using the ggplot function a scatter plot was created to assess if there is a link between the Daily Average Hu-
midity and spraying operations, as there is no data regarding spraying operations, a factor variable indicating
whether the site was ’Open’ or ’Closed’ was used instead. For the plot the y-axis was the Average Humidity
and the x-axis was the Date with the points on the graph coloured to represent ’Open’ or ’closed’.

Using the ggplot function variables in the final linear model were plotted against each other with a factor
variable indicating whether the Average PM10 for that observation exceeded the daily limit of 0.05 mg/m3.

4 Results

Initially the linear regression models produced for this analysis used the original dataset containing obser-
vations taken at 5 minute intervals however modeling PM10 using this data resulted in an R2 ≈ 0.25 and
modeling log(PM10) improved the model to an R2 ≈ 0.45. Given these results and the improvement in the
model found when using the 24 Hour dataset there is likely too high a degree of variability in the PM10

values when measured at 5 minute intervals to produce an effective model using the 5 minute data, hence the
remainder of the analysis was carried out using the 24 Hour Data.

4.1 Data Exploration

The histogram of the Daily Average PM.10 from the 24 hour dataset (see figure 1) shows that while the
majority of the 244 days in the dataset have a Daily Average PM10 of less than 0.05 mg/m3 there were 54
days that exceeded that limit.

Figure 1: Histogram of Daily Average PM.10 from the 24 Hour Dataset
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The correlation plot (see figure 2) shows that Traffic total and Tonnage Total have a strong positive corre-
lation with PM10 whereas Average Crushing Amount has a moderate positive correlation and both Average
Ambient Pressure and Average Wind Speed have a weak positive correlation with Average PM10. Average
Humidity has a moderate negative correlation with PM10 and Average Temperature has a negative weak
correlation with Average PM10. This suggests that Traffic and Tonnage total are the biggest contributing
factors of Average PM10 in the dataset and conversely Average Humidity contributes the most in reducing
Average PM10 levels. Traffic total is also highly positively correlated to Tonnage total as well as moderately
positively correlated to Crushing Amount total, although this result in not unexpected, it does mean that
any linear regression model fitted with more than one of these variables will need to be checked for the effects
of multicollinearity.

From the plots of the dependent variables against Average PM10 (see figure 3) there appears to be a positive
relationship between Traffic total (a) and Average PM10 as well as Tonnage total (b) and Average PM10.
There also appears to be negative relationship between Average Humidity (d) and Average PM10. There is no
obvious relationship between the other dependent variables and Average PM10. These results are as expected
based on the correlation plot (see figure 2).

It should be noted that the position of the Dust Master at the weighbridge might be effecting the corre-
lation of the Traffic Total variable with Daily Average PM.10 as all trucks the enter and exit the site do so
at the weighbridge. This means that any dust the trucks kick up is more likely to be recorded by the Dust
Master than dust produced by crushing (Crushing Amount total) or the drop off and collection of material
(Tonnage Total) due to their relative proximity to the Dust Master.

See appendix D for a summary table of the 24 Hour Dataset.

Figure 2: Correlation Plot of 24 Hour Data
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(a) Traffic Total vs Average PM10 (b) Tonnage Total vs Average PM10

(c) Average Temperature vs Average PM10 (d) Average Humidity vs Average PM10

(e) Average Ambient Pressure vs Average PM10 (f) Crushing Amounr Total vs Average PM10

Figure 3: Dependent Variables vs Average PM10 for the 24 Hour Dataset
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4.2 PM10 Transformations

Histograms of Average PM10, log(Average PM10), sqrt(Average PM10) and log(sqrt(Average PM10)) are
shown in the figure below (4). All three transformations are more normally distributed with both the
log(Average PM10) and log(sqrt(Average PM10)) being left skewed.

(a) PM10 (b) log(PM10)

(c) sqrt(PM10) (d) log(sqrt(PM10))

Figure 4: Histograms of PM10 Transformations

From the four linear models created to test the effectiveness of transforming the independent variable the
Average PM10 model (2) had the lowest R2 result with R2 = 0.613, both the log(Average PM10) (3) and
log(sqrt(Average PM10)) (5) models resulting in a significant improvement in R2 from 0.613 to 0.735, the
sqrt(Average PM10) (4) model also showed a significant improvement with an R2 = 0.694.

All four models had 4 common highly significant (p-val < 0.001) effects: Traffic Total, Average Temper-
ature, Average Humidity and Average Ambient Pressure, Tonnage and Crushing Amount were not significant
for all four models.

4.3 Wind Analysis

When log(Average PM10) was modeled without any wind effects the model had an R2 = 0.71 and an Adj-
R2 = 0.703.
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Modeling with only the wind speed effect with no wind direction, the wind speed effect was significant
(p-val = 0.000753) and the effect estimate was negative. Hence an increase in the wind speed was associated
with a decrease in log(Average PM10). The addition of wind speed to the model improved the model with
R2 = 0.724 and Adj-R2 = 0.715.

Modeling with 4 wind directions resulted in a slightly improved model with an R2 = 0.735 and an Adj-
R2 = 0.723. East and South wind effect estimates were both negative and significant with p-values < 0.01,
while North (p-val = 0.513) and West (p-val = 0.224) effect estimates were both found to be insignificant.

Modeling with 8 wind directions again resulted in a slightly improved model an R2 = 0.746 and an Adj-
R2 = 0.730. Only South and Sough East wind direction effects were significant with p-values < 0.01 and both
effects were also negative.

Modeling with 16 wind directions resulted in a slightly worse model than with 8 wind directions with an
R2 = 0.751 and an Adj-R2 = 0.726. Although R2 improved the lower Adj-R2 indicates that this is likely just
a result of the increased number of effects in the model. Of the 16 wind direction effects only South wind was
found to be significant with p-val=0.0124 and a negative effect estimate.

Table 2: Significant Wind Effect Estimates
Number of Wind Directions Wind Direction Angle

4 East 45◦ to 135◦

4 South 135◦ to 225◦

8 South East 112.5◦ to 157.5◦

8 South 157.5◦ to 202.5◦

16 South 168.75◦ to 191.25◦

The analysis of these models shows that there is no significant evidence of an increase in wind speed in any
direction being associated with an increase in log(Average PM10) and therefore an increase in Average PM10.
The analysis does show that for all three models with wind directions, that a southerly wind and possibly
and south easterly or easterly wind is associated with a decrease in log(Average PM10) and hence a decrease
in Average PM10. Given the location of the Dust Master Pro 7000 at the weighbridge, a possible reason for
these unexpected results could be that these winds are blowing dust out of the work site thus increasing PM10

emissions but reducing the PM10 levels on site.

4.4 Model Analysis

The multiple linear regression model of log(Average PM10) (8) has an R2 = 0.710 and Adj-R2 = 0.703 which
suggest a good fit for the data. The model has 4 significant effects: Traffic total (p-val < 0.001), Average
Temperature (p-val < 0.001), Average Humidity (p-val < 0.001) and Average Ambient Pressure (p-val <
0.001). Tonnage total (p-val = 0.560) and Crushing Amount total (p-val = 0.646) were insignificant (see
table 3 for the coefficient estimates).

To check for multicollinearity between Traffic total, Tonnage total and Crushing Amount total the model
was repeated with only one of the variables included in each model. Of the three models the Traffic total
model was significantly better than the other two with an R2 = 0.709 compared to the Tonnage total model
(R2 = 0.592) and the Crushing Amount total model (R2 = 0.394). Each of the 3 variable effect estimates were
significant (p-val < 0.001) in their respective models. Given that the Traffic total model had a significantly
higher R2 than the other two models it is likely that truck traffic is the primary cause of increased PM10

levels and that tonnage and Crushing amount are providing a weaker estimate of the amount of traffic on the
site which is why their respective models perform worse, as Tonnage total has a higher correlation to Traffic
total than Crushing Amount total its model performs better than the Crushing Amount total model. As a
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Table 3: Coefficient Estimates
Coefficients Estimate Std. Error t-value p-value
(Intercept) −2.766e+ 01 5.216e+ 00 -5.304 2.60e− 07
Traffic total 6.562e− 03 6.871e− 04 9.550 < 2e− 16

Tonnage total 4.484e− 05 7.681e− 05 0.584 0.559875
Average Temperature 4.800e− 02 1.217e− 02 3.945 0.000105

Average Humidity −3.292e− 02 2.704e− 03 -12.177 < 2e− 16
Average Ambient Pressure 2.472e− 02 5.121e− 03 4.827 2.48e− 06

Crushing Amount total −5.632e− 05 1.225e− 04 -0.460 0.646166

result the final model includes only 4 variables: Traffic Total, Average Temperature, Average Humidity and
Average Ambient Pressure.

Effect estimates for the final model (4) indicate that Traffic total is the most significant predictor of log(Average
PM10) as it has the highest t-value of all 4 effect estimates, followed closely by Average Humidity. As this is
a model of log(Average PM10) the effect of these variables on Average PM10 is given as a percentage increase
or decrease in Average PM10.

For Traffic Total, as exp(6.794e − 03) = 1.006817132 ≈ 1.0068 we expect to see a 0.68% increase in Av-
erage PM10 for a 1 unit increase in Traffic total from 0. For an increase of 100 in Traffic total from 0 we would
expect a 97.3% increase in Average PM10 as exp((6.794e− 03) × 100) = 1.972694 ≈ 1.973. Furthermore for
an increase of 200 in Traffic total from 0 we would expect a 289% increase in PM10 as exp((6.794e − 03) ×
200) = 3.891521 ≈ 3.89. Given that Traffic total ranges from 0 to 262 in the dataset these estimates highlight
the significant effect Truck Traffic has on PM10 levels. The effect of increased truck traffic is also not linear as
the increase in Average PM10 from an increase in 200 to Traffic total is more than double that of the increase
in 100 to Traffic total.

These results suggest that either reducing Truck Traffic or reducing the effect of Truck traffic should be
the highest priority for Concrush in order to reduce their daily and yearly PM10 emissions. Given the there
is an exponential relationship between Traffic total and Average PM10 reducing the the number of days with
high traffic numbers while still maintaining the same total yearly traffic could also be effective at reducing
PM10 emissions.

Table 4: Coefficient Estimates for Final Model
Coefficients Estimate Std. Error t-value p-value exp(Estimate)
(Intercept) −2.725e+ 01 5.111e+ 00 -5.332 2.25e− 07 1.463779e− 12
Traffic total 6.794e− 03 3.913e− 04 17.360 < 2e− 16 1.006817132

Average Temperature 4.653e− 02 1.195e− 02 3.895 0.000127 1.04763
Average Humidity −3.267e− 02 2.670e− 03 -12.238 < 2e− 16 0.9678579

Average Ambient Pressure 2.431e− 02 5.016e− 03 4.846 2.27e− 06 1.024608

From the plots of the final model (see appendix E) there is no evidence of significant non-linearity in the
Residuals vs Fitted graph (a) and the residuals are relatively evenly distributed about 0 with no pattern
in their distribution, as such there is no evidence of heteroscedasticity. From the Normal Q-Q plot (b) the
residuals appear to be approximately normally distributed. From the Residuals vs Leverage plot (d) there
appear to be no highly significant data points that have both a high leverage and a high standardized residual.
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4.5 Average PM10 Estimates

Using the final model (8) and the associated coefficient estimates (4) the Yearly Average PM10 was estimated
to be 0.0313 mg/m3 and there were 36 days that exceeded the daily maximum of 0.05 mg/m3 of Average
PM10. These results are lower than the actual Average PM10 values in the dataset, where the Yearly Av-
erage PM10 is 0.0338 mg/m3 and 54 days exceeded the daily limit. These results show that the model in
underestimating Average PM10, given that the difference in the number of days exceeding the 0.05 mg/m3

is significant compared the the difference in Yearly Average PM10 the model is likely underestimating large
values of Average PM10. In the histogram below (5) the higher values of Average PM10 are mostly actual
values whereas the the bars for estimate values are larger for the lower Average PM10 values. Scatter plots
of the actual vs estimate Average PM10 values (12) show that this can be seen especially between September
and December (see figure 13) where most of the high Average PM10 values are the actual values.

Figure 5: Actual vs Predicted Average PM10

Redistributing the Traffic total variable to reduce the number of days with high Traffic total counts resulted
in a reduction in both the estimated Yearly Average PM10 (from 0.0313 to 0.0292) and the estimated number
of days that exceed the 0.05 mg/m3 limit (from 36 days to 20 days). See appendix F to see the change in
distribution for the Daily Traffic totals while maintaining the same Traffic total over the whole 244 days of
the dataset (histogram is of only open days).
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The total tonnage in the dataset was 174,803.55 ≈ 174,800 tonnes, hence the total yearly tonnage in the
dataset was estimated to be 174,800 × (365/244) ≈ 261,000 tonnes. The estimates for the Yearly Average
Tonnage and the number of days over the 0.05 mg/m3 limit are shown in the table below (5), given that
the estimate of Yearly Average PM10 for 261,000 tonnes is less than the actual Yearly Average PM10 little
weight should be given to these findings. Figure 6 shows that there is an exponential relationship between
Yearly Tonnage and Estimated Yearly Average PM10 that appears relatively linear for yearly tonnages less
than 500,000 tonnes.

Table 5: Average PM10 Estimates for Increased Yearly Tonnage Total
Yearly Tonnage (tonnes) Yearly Average PM10 (mg/m3) Days over 0.05 mg/m3 Yearly Traffic Total

261,000 0.0292 20 46,707
300,000 0.0339 34 53,686
350,000 0.0411 78 62,634
400,000 0.0499 124 71,582
450,000 0.0608 157 80,529
500,000 0.0742 177 89,477

Figure 6: Yearly Tonnage Total vs Estimated Yearly Average PM10
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4.6 Further Analysis

4.6.1 Traffic total vs Average Humidity

From figure 7 the majority of days where the daily Average PM10 is exceeded are in the bottom right of the
graph and are especially concentrated for Average Humidity levels less than 80% and Traffic totals above 150.
For days with an Average Humidity of greater than 80% and/or a Traffic total of less than 150, only 7.5%
exceeded the 0.05 mg/m3 daily PM10 limit, for only days where the site is open that percentage increased to
11%. The percentage of days that exceed the 0.05 mg/m3 daily PM10 limit with an Average Humidity of less
than 80% and a Traffic total of greater than 150 was 44%, which is an increase of 400%.

Figure 7: Traffic total vs Average Humidity
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4.6.2 Effects of Spraying on Average Humidity

A visual inspection of the daily average humidity over time in the figure below (8) shows that there is no
apparent link between the daily average humidity and whether the work site is open or closed, as such it is
unlikely that the water spraying at Concrush effects the humidity. That is not to say that the water spraying
doesn’t reduce PM10 emissions only that the negative effect of humidity is independent of water spraying.

Figure 8: Average Humidity Open vs Closed days
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5 Further Work

To help assess the effects of wind on PM10 emissions the QAMS Dust Master Pro 7000 (current location
indicated by the yellow star in figure 9) could be relocated to the each of the 4 dust depositional bottles
(indicated by the Blue and Yellow Pins in figure 9) for a period of a month each. Relocating the Dust Master
away from the weighbridge would also help to confirm whether the high significance of the Truck Traffic total
variable is effected by the Dust Masters position. Ideally the purchase of multiple Dust Masters would allow
for the simultaneous collection of data at different positions in the compound.

Figure 9: Concrush Facility - Dust Master and Depositional Bottle Locations

Given the location of the 4 dust depositional bottles the wind effects analysis could be repeated and the effects
of wind passing over the facility before reaching the Dust Master could give a better understanding of the
relationship between wind and PM10 emissions and might help explain the unexpected findings in the analysis.

While the logarithmic transformation of Average PM10 resulted in a significant improvement in the R2 of
the linear models, log(Average PM10) was still left skewed rather than normally distributed. More complex
transformations of the dependent variable Average PM10 might result in a more accurate model. This might
also help the amount at which the model underestimates some of the higher Average PM10 observations which
will then give more weight to any predicted Yearly Average PM10 levels that are estimated for an increased
Yearly Tonnage.
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6 Conclusion

Multiple linear regression models were successfully fitted to estimate log(PM10) all having an R2 > 0.7. On
site operations at Concrush were found to have a significant effect on PM10 with Traffic total, Tonnage total
and Crushing total all having significant positive effect estimates when estimating log(PM10), whether the
effects of Tonnage total and Crushing total are directly associated with log(PM10) or are only significant due
to their correlation with Traffic total is unclear. The effects of wind speed and wind direction were found to
be either insignificant or associated with a decrease in log(PM10), the position of the Dust Master may have
an effect on these results and an analysis of data collected from a Dust Master in different positions may
help explain the unexpected results or find different results completely. Linear models of log(PM10) found
that the 4 most significant factors for estimating log(PM10) in order of significance were Traffic total, Average
Humidity, Average Ambient Pressure and Average Temperature, with Traffic total and Average Humidity
being far more important than the other two. Days that exceeded a Traffic Total of 150 trucks and had an
Average Humidity of less than 80% were found to be 400% more likely to exceed the daily limit of 0.05 mg/m3

PM10. To effectively reduce PM10 emissions low humidity days should be monitored with a possible limit of
traffic set for days with a less than 80% humidity. Continued spraying and the eventual sealing of roads that
are used by the trucks should be prioritised and further analysis should be done before the installation of
wind barriers.
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Appendix

A Datasets

Table 6: Dust Master Data
Variable Description Units/Format

Date Date DD/MM/YY
Time Time HH/MM/SS
SV Supply Voltage V

PM2.5 PM2.5 concentration mg/m3

PM.10 PM10 concentration mg/m3

PM.Tot PM.Total concentration mg/m3

LPM Flowrate L/min
PUMP Pump demand %

S.T Temperature (onboard sensor) °C
S.RH Relative humidity (onboard sensor) %
S.DP Dew point (onboard sensor) °C
S.AP Ambient Pressure (onboard sensor) mBar

M1.WS Wind speed (weather sensor 1) m/s
M1.WD Wind direction (weather sensor 1) °

M1.WD.SD Wind direction standard deviation (weather sensor 1) °
M1.WB Wet bulb temperature (weather sensor 1) °C
M1.T1 Temperature 1 (weather sensor 1) °C
M1.T2 Temperature 2 (weather sensor 1) °C
M1..RH Relative humidity (weather sensor 1) %
M1.AP Ambient Pressure (weather sensor 1) mBar
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Table 7: Truck Data
Variable Description Units/Format
Date In Date DD/MM/YY
Time In Time of entry HH/MM

Time Out Time of Exit HH/MM
Vehicle Registration Vehicle number plate

Direction Truck Direction IN/OUT
Gross Total Truck Weight tonnes
Tare Truck weight tonnes
Net Truck load weight tonnes

Product Description Truck load description

Table 8: Crushing Data
Variable Description Units/Format

Server Timestamp Date and Time DD/MM/YY HH/MM
Smartphone Timestamp Date and Time DD/MM/YY HH/MM

Record Timestamp Date and Time DD/MM/YY HH/MM
Amount Volume of Material m3

Type Type of recording
Indication Type of recording

Factor %
Diameter mm
Density Material Density tonnes/m3

Idle Time Machine Idle Time minutes
Material Material Size 20mm/40MM
Customer Machine Owner Concrush

Sensor Sensor Number Sensor 878
Measurement Duration Measurement Duration minutes

B Wind Direction Angles

Table 9: 4 Wind Directions
Wind Angle 1 Angle 2
North 315 45
East 45 135

South 135 225
West 225 315
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Table 10: 8 Wind Directions
Wind Angle 1 Angle 2
North 337.5 22.5

North East 22.5 67.5
East 67.5 112.5

South East 112.5 157.5
South 157.5 202.5

South West 202.5 247.5
West 247.5 292.5

North West 292.5 337.5

Table 11: 16 Wind Directions
Wind Angle 1 Angle 2
North 348.75 11.25

North North East 11.25 33.75
North East 33.75 56.25

East North East 56.25 78.75
East 78.75 101.25

East South East 101.25 123.75
South East 123.75 146.25

South South East 146.25 168.75
South 168.75 191.25

South South West 191.25 213.75
South West 213.75 236.25

West South West 236.25 258.75
West 258.75 281.25

West North West 281.25 303.75
North West 303.75 326.25

North North West 326.25 348.75

C Wind Speed Models

Model with Average Wind Speed

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + β7 × Average Wind Speed + ε

(13)

Model with 4 Wind Directions

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + β7 × North Wind + β8 × East Wind

+β9 × South Wind + β10 × West Wind + ε

(14)

Model with 8 Wind Directions

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + β7 × North Wind + β8 × North East Wind

+β9 × East Wind + β10 × South East Wind + β11 × South Wind

+β12 × South West Wind + β13 × West Wind + β14 × North West Wind + ε

(15)
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Model with 16 Wind Directions

log(Average PM10) = β0 + β1 × Traffic Total + β2 × Tonnage Total + β3 × Average Temperature

+β4 × Average Relative Humidity + β5 × Average Ambient Pressure

+β6 × Crushing Amount Total + β7 × North Wind + β8 × North North East Wind

+β9 × North East Wind + β10 × East North East Wind + β11 × East Wind

+β12 × East South East Wind + β13 × South East Wind + β14 × South South East Wind

+β15 × South Wind + β16 × South South West Wind + β17 × South West Wind

+β18 × West South West Wind + β19 × West Wind + β20 × West North West Wind

+β21 × North West Wind + β22 × North North West Wind + ε

(16)

D 24 Hour Data Variable Summary

Table 12: 24 Hour Data Variable Summary
Variable Units Mean Minimum Maximum

Average PM.10 mg/m3 0.033753 0.001878 0.119390
Traffic Total count 128.20 0 262

Tonnage Total tonnes 716.4 0 3142.9
Average Temperature °C 15.130 5.509 22.716

Average Humidity % 74.65 42.18 98.07
Average Ambient Pressure mBar 1006.0 981.1 1025.3

Crushing Amount Total m3 187.1 0 1035.9
Average Wind Speed m/s 1.3769 0.4065 3.7838
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(a) Residuals vs Fitted (b) Normal Q-Q

(c) Scale-Location (d) Residuals vs Leverage

Figure 10: Model Plots
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E Plots of the Final Model

F Histogram of Actual vs Shifted Daily Traffic Total

Figure 11: Histogram of Actual vs Shifted Daily Traffic Total
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G Actual vs Estimate Daily Average PM.10

Figure 12: Actual vs Predicted Average PM10
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Figure 13: Actual vs Predicted Average PM10 for 01/09/2020 to 20/11/2020
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